Главная
Тест-драйв
Научная история
Наука в вашем городе
Наука 2 Автомобили Гаджеты Промдизайн |
Термопара против пара Любой источник тепла можно превратить в источник электроэнергии – без паровых котлов, турбин и прочих громоздких сооружений. Как известно, основная часть электроэнергии вырабатывается за счет сжигания ископаемого сырья. Полученное при этом тепло используется, например, для образования пара, который крутит турбину, присоединенную к генератору. Таким образом, главным методом получения электричества является непрямое преобразование тепла, сопряженное с весьма существенными энергетическими потерями. «На производство 1 ватта полезной энергии в среднем тратится около 5 ватт тепла, из которых 4 уходят на разогрев окружающей среды. Если бы нам удалось хотя бы незначительно уменьшить эти потери, это означало бы огромную экономию топлива и существенное снижение выбросов углекислого газа,» — поясняет Арунава Майумдар (Arunava Majumdar) из Калифорнийского университета в Беркли. Между тем метод прямого преобразования тепла в электроэнергию известен аж с первой половины XIX века, когда Томас Зеебек установил, что избирательное нагревание (или охлаждение) точки контакта двух проводников, имеющих различные химические свойства, сопровождается появлением электродвижущей силы (термо-ЭДС). Попросту говоря, на противоположных концах проводников возникает напряжение, а если их замкнуть, в цепи начнет течь электрический ток. Именно на этом принципе работает термопара – нехитрый прибор, применяемый для измерений температуры. Простейшая термопара состоит из двух стержней разного металла, спаянных на одном конце. По изменению напряжения на противоположных концах стержней можно судить об изменении температуры в точке их соединения. Попытки приспособить феномен термо-ЭДС для получения электричества предпринимались неоднократно. Соответствующие устройства, называемые термоэлектрическими конверторами, довольно активно разрабатывались в течение последних 50-ти лет и даже нашли свое применение в некоторых областях промышленности. Однако для массового производства электроэнергии они явно непригодны. Во-первых, КПД подобных преобразователей не поднимается выше 7%, в то время как у паровых турбин это показатель достигает 20%. А главное – эффективной термопаре требуются редкие металлы – висмут, теллурий, платина и др. Это обстоятельство делает термоэлектрические конверторы очень дорогими и весьма непрактичными устройствами. Однако специалисты из Калифорнийского университета сумели получить эффект термо-ЭДС с помощью искусственно синтезированной органической молекулы, соединяющей два металлических проводника. По мнению ученых, это означает настоящий прорыв в преобразовании тепла в электричество: органика очень дешева и проста в производстве. В ходе экспериментов ученые соединяли пары золотых проводников через прослойки из трех различных органических соединений – бензен-дитиола, дибензен-дитиола и трибензен-дитиола. Затем один из проводников начинали нагревать для создания разницы в температурах. На каждый градус разницы исследователи регистрировали рост напряжения в 8,7 мкВ для первого, 12,9 мкВ для второго, и 14,2 мкВ для третьего соединения, соответственно. Максимальная разница температур, достигнутая в ходе тестов, составила всего 30О по Цельсию. «Эти цифры могут показаться не слишком значительным, однако они вполне доказывают правильность нашей концепции. Органическое термоэлектричество сделало свой первый шаг,» — заявил Прамод Редди (Pramod Reddy), один из участников исследования. В ближайшее время ученые намереваются протестировать ряд других органических соединений и металлов, чтобы добиться более выраженного эффекта термо-ЭДС. Читайте также: « Электричество из водорослей», « Шумная энергия». По публикации Science Daily Красный квадрат«Дарвин» в космосе Инженеры человеческих тел Аллергия на рак Сияние мозга Темный космос Опасное соседство Антижир Карлик с сюрпризом Камень-антисупермен Тяжелая наследственность Стереокосмос Я робот – И я тоже Квантовый светоч Кислые воды Прекрасное далеко Худая старость Знак «Бесконечность» Адский климат |
1
2
3
4
5
6
7
|